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Abstract

There has been substantial progress in recent years, both in the theory and in ab initio codes for calculations of X-ray absorption spectra
(XAS), and in particular, the near edge structure (XANES). This progress is a sequel to the successful development of the theory and
interpretation of extended X-ray absorption fine structure (EXAFS). Here, we review the progress in this field leading up to the current state.
We focus on the real-space multiple scattering (RSMS) approach which gives a unified treatment of both EXAFS and XANES, as well as
many other spectroscopies. We also discuss the close connection between RSMS theory and excited state electronic structure, and in particular,
corrections to the independent particle approximation which are essential in a quantitative theory. These developments have led to a number
ab initio codes for the calculation and interpretation of XAS in terms of the electronic structure and coordination chemistry of materials.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Significant progress has been made over the last several
years in understanding the X-ray absorption near edge spec-
tra (XANES), i.e. the structure in the spectra within about
30 eV of threshold where scattering is strong and inelastic
losses are relatively weak. This progress has occurred in par-
allel with advances in synchrotron radiation X-ray sources
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fax: +1-206-685-0635.
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and computer technology. The unprecedented precision now
available in modern experimental probes of X-ray absorp-
tion spectra (XAS) underscores the need for improved theo-
ries for quantitative analysis of experiment. The progress in
XANES is a sequel to the dramatic advances in theory of ex-
tended X-ray absorption fine structure (EXAFS). The basic
theory of EXAFS is now well understood, as discussed in a
recent review[1]. Below, we will use the acronym XAS to
refer to both EXAFS and XANES since they can be treated
within a common theoretical framework. This framework il-
lustrates the close connection between the theory of XAS
and excited state electronic structure, since X-ray spectra are

0010-8545/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.ccr.2004.02.014
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directly related to a Green’s function for the excited photo-
electron in the presence of a core–hole. The main purpose
of this paper is to discuss recent advances in the theory of
XAS based on this connection.

In contrast to the now “standard” density functional the-
ory (DFT) of ground state electronic structure, the theory of
excited states is less well understood. Nevertheless, an anal-
ogous independent electron theory has emerged, in which
the final states are represented asquasi-particles. This ap-
proach, which is the basis for much current work, will be
referred to as thestandard quasi-particletheory of XAS.
The theory includes final state effects, such as the core–hole,
inelastic losses, and vibrational effects, and replaces the
ground state exchange-correlation functional with an energy
dependentself-energy. Thus, the approach differs substan-
tially from ground state theories. As a result, conventional
band structure and quantum chemistry codes with ground
state potentials are not usually appropriate for general XAS
calculations, except close to threshold. This is illustrated in
Fig. 1, which presents a comparison of the XAS of Cu as cal-
culated using ground state and standard quasi-particle the-
ories, and as measured experimentally. As one can see, the
quasi-particle model is in better agreement with experiment
at high energies, though discrepancies persist at the edge
which require corrections to the quasi-particle theory. Thus,
we also discuss recent advances in treating corrections to the
quasi-particle approximation, including multiple-electron
excitations and the effects of screening of the X-ray field.
We also briefly compare a number of approaches for the
calculation of XANES. Finally, we discuss how the theory

Fig. 1. XANES for K-shell Cu from XAS experiment (dots); from calculations with the FEFF8 code using the standard quasi-particle theory including
a plasmon-pole self-energy and a screened core–hole (solid line); and from ground state density functional theory without a core–hole (dashes). Note
that ground state theory (without a core–hole) is in reasonable agreement with experiment at the edge, but has too large an amplitude at high energies,
where the standard theory is in reasonable agreement.

can be used to interpret the XANES in terms of excited state
electronic properties of a material and their coordination
chemistry.

2. Standard quasi-particle theory of XAS

The basic independent-particle (i.e. quasi-particle) theory
of XAS [1–3] has been addressed by many authors. For-
mally, the contribution to the X-ray-absorption coefficientµ

from a given core-statei at a given X-ray energy ¯hω can be
calculated using Fermi’s Golden rule

µ(ω) ∼
∑
f

|〈i|d|f 〉|2δ(h̄ω + Ei − Ef ). (1)

Here h̄ω + Ei ≡ E is the photoelectron energy,d the cou-
pling to the X-ray field, andEi is the (large negative) energy
of the core level, and the sum is over unoccupied final states
of energyEf . Most practical calculations are based on the
reduction of the many-body Golden rule to a one-electron
approximation and the dipole-approximationd = ε̂ · �r. Al-
though the question of precisely which one-electron states to
use is not unambiguous, much current work is based on the
“final state rule,” in which the final states |f〉 are calculated
in the presence of an appropriately screened core–hole, and
all other many-body effects and inelastic losses are lumped
into a complex valued and energy-dependent self-energy or
optical potentialΣ(E). This standard quasi-particle model
is the basis for several XAS codes including FEFF[1], the
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CONTINUUM code of Natoli et al.[4], and the XANES
code of Fujikawa[5].

Within this quasi-particle theory, the final statesψf

are eigenstates of a Dyson equation (i.e. the analog of the
Schrödinger equation for excited states)

h′ψf =
[
p2

2m
+ V ′

coul + Σ(E)

]
ψf = Eψf . (2)

Here h′ is the non-Hermitian final state Hamiltonian,
V ′

coul is the final state Coulomb potential, where the
prime denotes quantities calculated in the presence of the
screened core–hole potential, andΣ(E) is the photo-electron
self-energy in the quasi-particle approximation.

As noted above, the crucial difference between ground
state electronic structure and excited states is the need for
Σ(E) and the core–hole for excited states. The self-energy
is essentially a dynamically screened exchange interaction,
which is the analog of the exchange-correlation potential
Vxc of ground state density functional theory. Typically, the
real part of the self energy, varies by about 10 eV over XAS
energies, while the imaginary part is negative and varies by
about 5 eV. Thus, this quantity accounts both for (extrin-
sic) inelastic losses or final-state broadening and systematic
shifts in peak positions compared to those calculated with
ground state theories.

One of the key developments in practical XAS codes is
an efficient algorithm for calculations ofΣ(E) based on the
GW approximation of Hedin. FEFF and other XAS codes
usually use a local density approximation forΣ(E) based on
the plasmon-pole dielectric constant; this is often referred
to as the Hedin–Lundqvist self-energy. This approximation
works well for EXAFS, and is close to the ground state
DFT near threshold. However, the plasmon-pole self-energy
tends to overestimate losses in the XANES as can be seen in
Fig. 1. One of the major challenges at present is to develop
better algorithms for calculatingΣ(E).

Although the standard quasi-particle theory usually works
well, all independent electron theories neglect many-body
excitations, e.g.intrinsic lossesdue to the sudden creation of
a core–hole. As a consequence, the standard theory usually
overestimates the magnitude of the fine structure in the spec-
tra, typically by about 10%. Moreover, the core–hole poten-
tial can be too strong (e.g. inFig. 1). Second, due to local
field effects, screening of the X-ray field can be important,
especially for soft X-rays[6]. This screening has been found
to be crucial for calculations of transition metal L-shell XAS.
These and other corrections are discussed inSection 3be-
low. Finally, the standard theory is not yet quantitative for
strongly correlated systems and for strongly atomic-like sys-
tems, where multiplet effects are important[7].

2.1. Real space multiple-scattering (RSMS) formalism

An important formal development in XAS theory is
the real-space multiple scattering (RSMS) approach. This
method is the real-space analog of the KKR band structure

method[2,3]. This approach also takes advantage of the
close connection between XAS and electronic structure and
provides an ab initio method for general calculations of XAS
over an extended energy range, even in aperiodic systems.

The calculations of final states in the Golden rule is often
a computational bottleneck, and can only be carried out ef-
ficiently for highly symmetric systems such as atoms, small
molecules, or periodic solids. However, many systems of
interest lack symmetry. Alsok-space (i.e. band structure)
methods[8,9], often ignore the effects of the core–hole and
lattice vibrations which spoil crystal translation symmetry,
unless a super-cell approximation is also used. Thus, in-
stead of explicitly calculating the final states, it is prefer-
able to re-express the XAS in terms of the photoelectron
Green’s function or propagatorG in real space, which im-
plicitly sums over all final states. Thus, making use of the
spectral representation,−(1/π)Im G = ∑

f |f 〉δ(E − Ef ),
the Golden rule can be rewritten as

µ ∼ − 1

π
Im〈i|ε̂ · �r′G(�r′, r, E)ε̂ · �r|i〉. (3)

This formulation turns out to be advantageous for XAS cal-
culations even in perfect crystals, since inelastic losses limit
the range probed by XAS experiment to clusters typically
of order a few hundred atoms about a given absorption site.
This gives rise to ashort range ordertheory. The cluster size
is determined largely by the mean-free path, which is con-
trolled by the core–hole and final state lifetimes. Moreover,
at high energies, scattering is relatively weak and perturba-
tion theory in the scattering potential converges well.

The starting point in MS theory is the separation of the
potential into contributions from “scattering potentials”vR
localized on each atomic site�R
V ′

coul + Σ(E) =
∑
R

vR(�r − �R). (4)

Within MS theory, the propagatorG(�r′, �r, E) = ∑
L,L′

RL(�r)GL,L′RL′(�r′) is separable, so that the expression for
µ in Eq. (3) can be reduced to a calculation of atomic
dipole-matrix elementsML = 〈i|ε̂ · �r|L〉 and a propagator
matrix GL,L′(E)

µ(E) = −4πe2ω

c
Im

∑
LL′

ML(E)GL,L′(E)ML′(E), (5)

whereL = (l, m) denotes the angular momentum variables.
Here and elsewhere we interchangeably use either the photo-
electron energyE or the photon frequencyω to characterize
the energy variation of the XAS. The relativistic generaliza-
tion [10] is identical in form, but with relativistic angular
momentum variables. Relativity is important for the treat-
ment of spin-orbit effects, which are biggest in the atomic
cores, and hence, most important for the transition matrix
elements. However, relativity has only weak effects on scat-
tering of non-relativistic electrons. In FEFF, they are treated
to high accuracy using a relativistic Dirac-Fock approach
[11].



134 J.J. Rehr, A.L. Ankudinov / Coordination Chemistry Reviews 249 (2005) 131–140

The calculation of the scattering potentials simplifies for
electrons even of moderate energy, where the scattering
depends strongly on the density in the core of an atom and
spherical symmetry is a good approximation. Thus, at high
energies self-consistency is not important, and the potentials
are well described in terms of an overlapped atom approx-
imation (i.e. theMattheiss prescription). However, this ap-
proximation is inadequate for XANES where self-consistent
field (SCF) calculations are almost always necessary. That
is, the potentials, electron densities and the Fermi energy
are iterated until they are self-consistent. A reason for this
is that the atomic electronic configurations usually dif-
fer substantially from those in solids due to hybridization
and chemical bonding. In the FEFF8 code, SCF poten-
tials are implemented using the spherical or “muffin–tin
approximation.” However, this approach is adequate to ob-
tain an accurate estimate of the Fermi energyEF and frac-
tional occupations of the various valence states. The Fermi
energy defines the threshold for the XANES; in molecules
EF is typically midway between the highest occupied and
the lowest unoccupied levels. Comparisons with accurate
ground state electronic structure codes have verified the
adequacy of this algorithm. Nevertheless, muffin–tin correc-
tions can be important within a few eV of threshold, e.g. in
anisotropic systems. Due to deviations from spherical sym-
metry some peaks are split and peak intensities are altered.
Thus, the development of efficient full-potential RSMS
approaches remains a challenge, which is under active
development.

In RSMS theory, the propagatorGL,L′ naturally separates
into intra-atomic contributions from the central atomGc and
MS contributions from the environmentGsc. Thus,G =
G0 + Gsc, so that the XASµ, can be factored as

µ = µ0(1 + χ). (6)

Hence, the structure in the XASµ depends both on the
atomic backgroundµ0 and on the fine structureχ due to MS,
χ = Im χ = Im TrmGsc

L,L, where the scattering contribution
to G is given by

Gsc = eiδ[1 − G0T ]−1G0eiδ
′
, (7)

where δ are partial-wave phase shifts. These results are
consistent with the experimental definition of XAFSχ =
(µ−µ0)/�µ0, where�µ0 is the jump in the atomic back-
ground absorption. For XANES, however, the MS expan-
sion must generally be carried to very high or all orders (full
MS), e.g. by matrix inversion[12] or Lanczos algorithms
(Section 2.2).

The matrixGL,L′ can also be expressed as a sum over
all MS paths that a photoelectron can take away from the
absorbing atom and back[2], and thus, gives rise to the
path expansion, which converges rapidly for EXAFS with
of order 102 paths. This expansion sometimes converges
adequately in XANES, particularly in cases with a short
core–hole lifetime such as deep core–hole levels in heavy

elements. However, it is not always reliable. The MS series
is formally given by

Gsc = eiδ′ [G0TG0 + G0TG0TG0 + · · · ]eiδ, (8)

where the successive terms represent single, double,. . .

scattering processes.
In general, one needs a combination of full multiple scat-

tering and the path expansion to cover all energies of interest
in XAS. Due to the large dimension ofG, exact calculations
with the path expansion can only be carried out for a few
low-order MS paths[13]. To overcome this computational
bottleneck, an efficient method based on the Rehr–Albers
(RA) scattering matrix formalism[14] has been devised. The
RA approach yields curved-wave calculations of the effec-
tive scattering amplitudefeff (k) (from which the FEFF code
takes its name) in terms of a separable representation of the
free propagatorG0(E). With this representation the MS ex-
pansion can be re-expressed as a sum over MS pathsR in
a form identical to the original EXAFS equation of Sayers
et al. [15]

χ(k) = S2
0

∑
R

|feff(k)|
kR2

sin(2kR+ Φk)e−2R/λk e−2σ2k2
, (9)

except that all quantities must be redefined to include curved
wave and many-body effects implicitly. Usually only a sub-
set of order 102 of the most important paths are adequate
to represent the observed XAFS to high accuracy. Herek =
[2(E − E0)]1/2 is the wavenumber measured from thresh-
old E0, λk ≈ k/(|ImΣ| + Γ/2) is the XAFS mean-free path
which is calculated in terms of the self-energy and core–hole
lifetime. Finally, σ, which characterizes the thermal and
structural disorder, is the rms fluctuation in theeffective path
lengthR = Rpath/2, which corresponds to peaks in the EX-
AFS Fourier transform.

The effects of thermal and structural disorder are of cru-
cial importance in XAS at high energies, where they lead to a
strong damping of the fine structure. This damping is usually
dominated by anXAFS Debye–Waller factorexp(−2σ2k2),
whereσ2 is the correlated mean-square radial vibrational
amplitude of the near-neighbor bonds, and varies inversely
with the local bond strength. This damping factor is the ana-
log of the Debye–Waller factor encountered in X-ray diffrac-
tion exp[−(1/2)k2u2]. In XANES, wherek is small (a few
Å−1), the Debye–Waller factor is of order unity, and hence
these terms are usually considerably less important. More-
over, we have found that they can be approximated to rea-
sonable accuracy by including a correlated Debye–Waller
factor exp(−σ2

R,R′k2) in each propagatorGLR,L′R′ . However,
there are some cases where structural disorder can lead to
additional peaks in the spectra, which are normally forbid-
den by dipole selection rules. This underscores the utility
of real-space codes compared to those based on crystalline
periodicity.

Higher moments of the pair distribution function are
sometimes important, especially in temperature dependent
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investigations of XAS. One of the key theoretical develop-
ments in XAFS theory is the cumulant expansion which
yields an efficient parameterization of such thermal and
configurational disorder[16,17] in terms of a few moments
or cumulantsσ(n) of the pair distribution function. For-
mally, this gives rise to a complex Debye–Waller factor
exp[

∑
n (2ik)nσ(n)/n!] in Gsc which contributes both to

the amplitude and phase of XAFS. The thermal contribu-
tions to σ2 can often be fit to a correlated Debye model
[18]. The corrections depend on anharmonicity. The first
cumulantσ(1) is the thermal expansion, while the thirdσ(3)

characterizes the asymmetry or skew of the pair distribu-
tion function. These odd order contributions can strongly
affect the phase of the fine structure, especially at high
energy, giving a contribution 2kσ(1) − 4k3σ(3)/3 + · · · .
Relations between the cumulants have been derived[19]
which show, to leading order in the anharmonicity param-
eter, thatσ(1) ∝ σ(2)(T) and thatσ(2) is related toσ(2)(T).
The third cumulant is important in bond distance determi-
nations and in interpretations of thermal expansion. If the
third cumulant is neglected in the analysis, bond distances
obtained from EXAFS often appear unphysically short.

Improved treatments of XAFS Debye–Waller factors have
recently been developed which go beyond the correlated De-
bye approximation[20], and permit fits of Debye–Waller
factors to local spring constants. Such treatments are im-
portant in highly anisotropic materials such as polymers
and biological systems. Another approach is to parameter-
ize theN-particle distribution[21]. Molecular-dynamics ap-
proaches are promising[22] as a less phenomenological
approach, but accurate ab initio treatments require compu-
tationally intensive, total energy calculations and remain a
challenge.

2.2. Fast parallel, Lanczos XANES calculations

Due to the need for matrix inversion in full MS calcula-
tions, which scale in compute time as the cube of system
size, XANES calculations are usually more time-consuming
than EXAFS where the MS expansion converges typically
with of order 102 paths. Indeed, full MS calculations be-
come computationally intractable in the EXAFS regime or
when (e.g. for lowZ atoms) the mean free path is very long.
This limitation has slowed attempts to use XANES in prac-
tical fitting schemes to extract chemical information in ad-
dition to geometric structure. Thus, one of the challenges
in XANES theory has been to increase the computational
speed. To this end, we have found that modern Lanczos
algorithms are quite stable and can substantially improve
computational speed[23] of the matrix inversion. The Lanc-
zos algorithm is now incorporated as an option in the most
recent version 8.2 of FEFF. An advantage of the Lanczos
approach is that it naturally interpolates between the full
and finite MS limits. More precisely, the number of Lanc-
zos iterations needed for convergence roughly corresponds
to the order of MS terms included in the calculation at a

given stage. For Si, for example the number of iterations
is found to drop from order 102 near threshold to of order
10 around 35 eV above the edge, where the path expansion
then converges well. Thus, the approach clarifies how the
MS expansion converges with respect to energy and when
the path expansion is valid. This difference provides a way
to differentiate between EXAFS and XANES, based on the
convergence of the MS expansion.

Even more dramatic reductions in computational time can
be obtained from parallel algorithms. The time for such al-
gorithms scales asT0+T1/N, whereN is the number of pro-
cessors, and has been found to provide about two orders of
magnitude further improvement[23] in computational speed
with of order 102 processors. Parallelization has also been
implemented in FEFF8 with the message-passing-interface
(MPI) protocol[24]. As a result, XANES calculations, even
for very large systems of order 103 atoms, can now be car-
ried out in about 1 cpu-h on large parallel computers with
MPI. This large size is needed for lowZ materials like Si,
where the mean-free path and core–hole lifetime are rela-
tively large.

2.3. Comparison with other approaches

Although we have focused on the RSMS approach here,
many other one-particle methods are now used for calculat-
ing XANES. Each has its advantages and disadvantages and
regions of validity.

Conventional state quantum chemistry codes like GAUS-
SIAN [25] and DMOL [26], band structure codes like the
full potential LAPW code WIEN2K[27], and plane wave
pseudopotential codes like CASTEP[28], PARATEC[29],
and VASP[30] are based on ground state density functional
theory. Such codes are now well developed and generally
give highly accurate treatments of ground state electronic
structure, e.g. Coulomb potentials, electron densities, total
energies, and electronic densities of states. Many of these
ground state codes also make use of parallel computation to
improve efficiency. Such codes can also calculate low en-
ergy excited state properties, within a few eV of threshold.
However, since self-energy effects are neglected, the calcu-
lated peak positions and amplitudes tend to deviate system-
atically from experimental results. To compensate for the
self-energy shifts Matterlik et al.[31] found that it neces-
sary to rescale (i.e.stretch) the energy axis of the theory
with respect to the threshold by a factor typically about 1.06
to match experimental peak positions. For these reasons,
ground state codes are often unsatisfactory for quantitative
XANES calculations, even for the systems for which they
are designed, i.e. molecules and periodic solids. Moreover,
such codes can be inefficient for calculations of XANES.
For example band-structure codes make use of detailed Bril-
louin zone summations to calculate electronic densities of
states to very high accuracy, however, many of the fine de-
tails of the structure (e.g. van Hove singularities which are
not observed) are then washed out by final state broadening.
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A significant improvement on pure ground state codes is
the inclusion of a static screened core–hole potential, espe-
cially for theK-shellof insulators. This core–hole effect can
be included in band-structure codes, e.g. with a super-cell
approach and large units cells of order 102 atoms. This yields
an approximation analogous to the final state rule. For ex-
ample pseudopotential codes based on this approach have
yielded XANES in reasonable agreement with experiment
[32]. The quantum chemistry code STOBE[33] uses a local
orbital approach and a transition-state approximation to the
core–hole potential. Further improvements, such as the addi-
tion of GW self energies, should increase the utility of these
codes for excited state calculations. Efforts along these lines
are now being made, e.g. with the PARATEC code[29].

By comparison, the RSMS approach method has several
advantages for XAS calculations, since it includes the final
state effects of the self-energy and the core–hole. Moreover,
the method provides a relativistic all-electron real-space
approach which is applicable over a wide energy range
from threshold up to over 1 keV. Indeed, the RSMS method
is currently the only approach capable of quantitative EX-
AFS calculations at high energies. In contrast, due to basis
set limitations, most ground state codes are limited to a
few tens of eV from threshold. A current drawback of the
RSMS method is the reliance on spherical muffin–tin poten-
tials. However, efforts to develop full-potential real space
approaches are in progress. For example the real-space
approach of Joly et al.[34] uses a finite cartesian grid in
real space, however, the method is presently limited to low
energies and is not yet self-consistent.

3. Many-body effects—inelastic losses and
local-field effects

3.1. Inelastic losses

Theories of inelastic losses in XAS have a long history
[35–37]. As noted inSection 1, inelastic losses like shake-up
and shake-off processes, are crucial to a quantitative theory
of XAS amplitudes. For this reason, one of the drawbacks
of the standard quasi-particle model is an overestimate of
the amplitude of the various XAS peaks, typically by about
10%. This discrepancy can lead to incorrect coordination
number determinations in XAS analysis. Correcting this er-
ror requires a treatment of inelastic losses that goes beyond
the quasi-particle approximation. The reason is that the stan-
dard quasi-particle model only includesextrinsiclosses, i.e.
losses which occur during the propagation of the photoelec-
tron and are caused by the creation of excitations of the sys-
tem such as plasmons, electron–hole pairs, etc. However, to
obtain correct amplitudes one must also take into account
intrinsic losses, which refer to the creation of excitations by
the sudden creation of the core–hole. Since such excitations
are identical to those created by extrinsic losses, they are
quantum-mechanically indistinguishable, and hence,inter-

ferencebetween extrinsic and intrinsic losses must be con-
sidered. As in photoemission spectroscopy, this interference
is quite strong near excitation thresholds, where the losses
strongly cancel due to the opposite signs of the coupling
between the photoelectron and the core–hole to excitations
such as plasmons.

Recently, there has been some progress in quantitative
calculations of inelastic losses. Below, we briefly review
the approach of Campbell et al.[38], which is an exten-
sion of the quasi-boson approach introduced by Hedin and
Bardyszewski[36,37]. This approach provides a computa-
tionally tractable way of treating inelastic losses in solids.
Other formulations such as configuration-interaction have
been used for atoms and small molecules, but are not yet
feasible for extended solids, where the excitations are dom-
inated by collective (e.g. plasmon) excitations. In particu-
lar, the results can be formulated in terms of an effective
one-particle propagatorGeff which includes both inelastic
losses and interference effects. This effective propagator
contains an asymmetric quasi-particle peak plus a broad
energy dependent satellite structure. The approach is es-
sentially a generalization of the GW approximation to the
self-energy, but can also account for edge-singularity ef-
fects and corrections to the final state rule. Moreover, the
approach yields semi-quantitative estimates of the XAFS
many-body amplitude factorS2

0(ω) which is typically about
0.9, in reasonable agreement with the observed amplitude
reduction. As in photoemission, the theory exhibits appre-
ciable cancellation of extrinsic and intrinsic losses near
threshold due to interference terms. This cancellation is
crucial in quantitative calculations, since the strength of
extrinsic satellite excitations from the fast photo-electron
alone is expected to be of order 0.3, which is much larger
than typical 10% amplitude discrepancies noted above.
Thus, the theory also explains the surprising weakness
of multi-electron excitations in the observed XAS[1], as
well as the validity of the standard quasi-particle model
which completely neglects such multi-electron excitations.
Physically, the cancellation reflects the opposite signs,
and hence, a reduced coupling of the photo-electron and
core–hole to plasmon and particle–hole excitations. Finally,
at sufficiently high energies the interference contributions
become negligible, and the theory crosses over to the
sudden-approximation limit given by the standard model.

One of main results of the quasi-boson theory is an expres-
sion for the XAS as a convolution of the one-electron XAS
µ(1) with an energy dependentspectral function A(ω,ω′)

µ(ω) =
∫

dω′A(ω,ω′)µ(1)(ω − ω′) ≡ 〈µ(1)〉. (10)

The shape of the total spectral functionA(ω,ω′) typically
consists of a sharp primary “quasi-particle” peak of strength
Z∗ ≈ 0.9 and width ImΣ, and a broad satellite. Formally,
A is related to an “effective, one electron Green’s function,”
A = (−1/π ) Im Geff which contains both quasi-particle and
satellite peaks. The satellite terms characterize the multiple
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electron and plasmon excitations (e.g. shake-off) in the
system. The one-electron XASµ(1) is similar to that in
the Golden rule inEq. (1), except that the dipole operator
d → dP contains a projection operatorP onto unoccupied
states. This operator prevents spurious transitions to oc-
cupied states in the standard model, and can be shown to
account for weak edge singularity effects close to the edge.

The quasi-boson (oscillator) model Hamiltonian is sim-
ilar to that introduced in Ref.[36] for photoemission. The
essence of the model is that the electron–hole type excita-
tions are represented by bosonsan with energiesωn, and
the electron-charge fluctuation couplings are represented by
terms linear in the boson operators. These coupling termsVn

are labeled by an indexn. They are termed fluctuation po-
tentials and can be determined from an RPA type dielectric
function.

The key result, obtained by an expansion to second order
in the coupling functionsVn, is an expression for the effec-
tive propagatorGeff which includes, respectively, the extrin-
sic and intrinsic losses and (with a minus sign) interference
terms

Geff(ω) = e−a

[
G(ω) +

∑
n

(
Vn

bb

ωn

)2

G(ω − ωn)

− 2
∑
n

Vn
bb

ωn

G(ω − ωn)V
nG(ω)

]
. (11)

Here the terms inωn give rise to the satellite excitations.
The functionsG(ω) ≡ Z[ω − h′ − ∑

(ω) + iγ]−1 are
damped Green’s function calculated in the presence of
a core–hole potential; they are equivalent to those in the
standard quasi-particle model except for a renormalization
constantZ of order exp(−a), where a ≈ 0.3 character-
izes the dimensionless strength of the satellites. The above
expression yields an expression for the spectral function
A(ω,ω′)and hence the XASµ(ω) as an expansion in damped
one-particle Green’s functions. The approach, thus, avoids
the calculation of correlated many-body final states using
CI or other methods. Moreover, it is efficient since details
in the shape ofA are not essential, as they are averaged
over in the convolution.

The various contributions to theA can be represented as
a sum of quasi-particle and satellite terms

Aeff(ω, ω
′) = Aqp(ω, ω′) + Asat(ω, ω′). (12)

Here Aqp represents the sharp quasi-particle peak and
Asat(ω, ω′) = Aextr(ω, ω

′) + Aintr(ω, ω
′) − 2Asat

inter(ω, ω
′)

comes from the extrinsic and intrinsic satellites and tend to
be suppressed by the interference satellites. Near threshold
the net weight of each of the contributionsAextr, Asat

inter, and
Aintr is equal to the strength parametera, and their shapes
are similar, so that the sum of all of these contributions
tend to cancel, thus, suppressing multi-electron excitations.
Also near threshold the interference contribution to the
quasi-particle peaka(ω) ≈ a. These results imply that the

net strength of the main quasi-particle peak becomes nearly
unity at threshold,Zexp(−a)(1 + 2a) → 1 + O(a2) and
hence, the standard quasi-particle model is recovered close
to threshold.

It is interesting to examine how the extrinsic and intrinsic
losses and interference affect XAFS. Since the fine structure
χ(1)(ω) is rapidly varying and energy dependent, the effect
of a convolution〈µ(1)〉 = µ0[1+〈χ(1)〉] over a (normalized,
positive) spectral functioñAeff(ω, ω

′) is a decreased and
phase-shifted XAFS amplitude. The effect on each multiple
scattering path of lengthR can be expressed as a “phasor
sum” over the effective spectral function analogous to that
derived using the sudden approximation[35]

S2
0(ω,R) =

∫ ω

0
dω′Ãeff(ω, ω

′)ei2[k(ω,ω′)−k(ω)]R

= |S0(ω,R)|2 eiΦ0(ω,R). (13)

Qualitatively, the many-body amplitude reduction factor
S2

0(ω,R) is weakly energy dependent, and reduces to unity
(the quasi-particle limit) at low energies where interference
is complete. Over a wide range,S2

0(ω,R) is roughly con-
stant near about 0.9 and then smoothly increases toward
unity at very high energies. As a result, various independent
particle theories can be corrected for multiple-electron exci-
tations using the quasi-boson approximation for the spectral
function. As shown by Campbell et al.[38], the convolution
also tends to correct for the discrepancy between experi-
ment and theory based on the standard quasi-particle model
(Fig. 1) close to the edge.

3.2. Local field effects in XAS

Although the standard quasi-particle model, is generally
successful in describing XANES, it can sometimes fail near
soft X-ray edges. A glaring example is the L2,3 edges of
3d transition metals[39–41]. For these materials, the in-
dependent electron approximation predicts an L3/L2 tran-
sition intensity “branching ratio” near 2:1, while the ob-
served ratio varies considerably with atomic numberZ, and
is closer to 1:1 for metals like Ti and V. The trends in
this behavior have been calculated using atomic models,
e.g. configuration-interaction and multiplet codes. An effi-
cient alternative approach for treating the problem is the
time-dependent local density approximation (TDLDA)[6].
In this approach, the Coulomb interaction naturally mixes
different many-body particle–hole states, leading to a shift
of oscillator strength from the L3 to the L2. The physics
of this mixing is similar in the CI and multiplet treatments.
The TDLDA approach also yields a physical interpretation
of these many-body effects in terms of screening of X-ray
field as discussed below.

The TDLDA [6,41–43] provides an efficient formal-
ism for calculations of response functions within the local
density approximation. This approach was originally intro-
duced for atoms[6], but has since been extended to many
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other systems[41]. The TDLDA equations are analogous to
Bethe–Salpeter equation (BSE)[44–46], which provides a
systematic many-body framework for treating particle–hole
interactions in XANES. The main difference between the
TDLDA and the BSE lies in the form of the interaction
kernel, K. The TDLDA uses a local exchange-correlation
contribution fxc based on density functional theory for the
direct terms, while the BSE uses the non-local screened
Coulomb interactionW which gives an improved treatment
of the screened core–hole potential. Here we will focus on
the TDLDA approach.

Within the TDLDA, the XAS (or cross-section)µ(ω)can
be expressed as an integral over the non-interacting response
function χ0(�r, �r′, ω) and the screened X-ray fieldφ(�r, ω).
Then the XAS can be written as

µ(ω) = −4πω

c

∫
d�rd�r′d̃∗(�r, ω)[Im χ0(�r, �r′, ω)]d̃(�r′, ω),

χ0(�r, �r′, ω) =
∑

ij

(fi − fj)
ψ∗
i (�r)ψi(�r′)ψ∗

j (�r′)ψj(�r)
ω + Ei − Ej + i0+ . (14)

This expression for the XASµ in the TDLDA is equivalent
to an analogous expression withd̃ replaced by the external
X-ray field d andχ0 by the full response functionχ =
[1−χ0K]−1χ0(ω) [6]. Herefi are Fermi occupation numbers
(1 or 0), and the sums run over all one-electron eigenstates
ψi(�r) of the ground state Hamiltonian. The screened dipole
couplingd̃(ω) consists of the external field d (in the dipole
approximation) plus an inducedlocal field, which in matrix
form is given by

d̃(ω) = ε−1(ω)d(ω), ε(ω) = 1 − K(ω)χ0(ω). (15)

Here the interaction kernelK(�r, �r′, ω) = V(�r, �r′) +
fxc(�r, �r′, ω) denotes the particle–hole interaction (or
TDLDA kernel), which contains direct and exchange parts,
andV = 1/|�r − �r′| is the Coulomb interaction.

This TDLDA approach formalism fits well with the RSMS
formalism used in FEFF8. In particular, the screening of both
the X-ray field and the core–hole interaction only affects
the particle–hole states and can be included implicitly in
terms of renormalized dipole matrix elements. Otherwise
the expression and hence the XAFS is unchanged. Thus, the
XAS can be re-expressed as

µ(ω) = 4πe2ω

c

∑
i,LL′

M̃iL(ω)ρL,L′(E)M̃iL′(ω), (16)

where M̃iL(ω) = 〈RL|d̃|i〉. The implementation of the
TDLDA approach evidently requires an adequate treat-
ment of the exchange-correlation functionalfxc(ω), which
is much less well understood than the ground state func-
tional. We have found that calculations of dynamical
screening can be avoided for L2,3 XAS by using a sim-
plified dynamic TDLDA model, based on the BSE[47].
This approximation yields good agreement with experi-
ment for the L2,3 XAS of 3d transition metals, and also

for the large blue-shifts observed in some soft X-ray
spectra[47].

4. Quantitative interpretation of XAS

In independent developments, robust EXAFS analysis
procedures have been developed based on the high-order
MS path approach, as briefly reviewed in Ref.[1]. These
procedures are now being used extensively to extract infor-
mation concerning the coordination chemistry of materials.
An illustrative set of examples is the coordination chem-
istry of minerals[48]. Some effort has also gone into the
interpretation of XANES data. However, the quantitative
analysis of XANES is still not well developed. In particular,
there is also a need for a reliableinverse-methodof ex-
tracting chemical and geometrical structure from XANES,
due to significant MS corrections. On the other hand, there
has been significant recent progress[49,50] which shows
that significant geometrical information can be obtained
from XANES alone using in analogy with EXAFS analysis.
Moreover, the XANES signal also depends sensitively on
the point-group symmetry of the absorbing atom due to the
dependence of the strong MS terms on symmetry. In addi-
tion, the shape of the XANES directly reflects the excited
state electronic densities of states in a material. The reason
is that the local projected density of states (LDOS)ρ has a
form analogous to XAFS, i.e.

ρ(E) = ρ0(E)[1 + χ(E)]. (17)

whereE is the photoelectron energy, so that both share sim-
ilar fine structure. As a result, one can deduce from experi-
mental XAS measurements the unoccupied LDOSρ(E) as

ρ(E) ≈ γ(E)µ(E), (18)

where the factorγ(E) = ρ0(E)/µ0(E) is a smooth, atomic
ratio, which includes the effects of the core–hole interac-
tion in µ0. Peaks in the LDOS[51,52] at low energy cor-
respond to transitions between different molecular-orbital
(MO). However, at higher energies the MO picture becomes
more difficult to apply[53]. This and analogous relations
have recently been exploited to interpret charge counts from
XANES, e.g. in transition-metal oxides[53] and also spin-
and orbital-moments from XMCD[54].

As an example, we show inFig. 2, the XANES for the
metal oxide CaO as calculated from FEFF8 (solid line) and
experiment (dashes). The comparison with no adjustable pa-
rameters is semi-quantitative, and is typical of results that
can currently be obtained for K-shell XAS. The comparison
also shows that additional broadening (e.g. to account for ex-
perimental resolution) should improve the agreement of peak
amplitudes. We also show inFig. 2, the local pDOS of the Ca
atom with the core–hole. The pDOS has been shifted verti-
cally for clarity; the abscissa has been shifted by the thresh-
old energyE0 = 4051.8 eV for comparison with the X-ray
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Fig. 2. XANES for CaO as calculated (solid line) and from experiment
(dashes). Also shown is the local pDOS of the Ca atom with the core–hole.
The pDOS has been shifted vertically for clarity and the abscissa has
been shifted by the threshold energyE0 = 4051.8 eV.

energyh̄ω. Calculations without a core–hole, e.g. from con-
ventional band-structure codes, have a much smaller main
peak and give much poorer agreement. Improvements in the
edge shape will likely require non-spherical corrections and
improved treatments of the self-energy and inelastic losses.

The SCF calculations also determine the fractional occu-
pations of the various angular momentum states above the
core levels. For the Ca atoms, one finds a solid state config-
uration of s0.31p0.44d0.89, i.e. with a net charge of+0.37, in
contrast to an atomic configuration of s2. For the O atoms,
the configuration is s1.85p4.48d0.036 with a net charge of
−0.37. These results show that the charge transfer to the
O and Ca atoms is proportional to theirvalence, i.e. ±2
with a factor of about 0.2. The configuration of the Ca with
the core–hole is s0.36p0.54d1.54, with a net charge of+0.44,
showing that there is approximately one additional charge on
the absorbing Ca atom which screens the core–hole. Similar
factors have been observed in other cases as well, though it
is not clear that this is a general rule.

5. Applications to X-ray spectroscopies

The RSMS formalism outlined above has been incorpo-
rated in various XANES codes. For example the implemen-
tation in FEFF8 permits self-consistent calculations of both
XAS and electronic structure. This code has already been ap-
plied extensively[1]. Tests show that this approach (without
a core–hole) can also calculate LDOS and hence ground state
electronic structure in good agreement with full-potential
band-structure codes such as WIEN2K. The FEFF8 code is
also highly automated and “user friendly,” requiring a min-
imum of input and few adjustable parameters.

Because the underlying physics is similar, the same
RSMS approach can be applied to many other spectro-

scopies, e.g. electron energy loss spectra (EELS)[55,56],
diffraction anomalous fine structure (DAFS), and the X-ray
elastic scattering amplitude (XS)[57]. In this latter ap-
plication, both real and imaginary parts of the anomalous
X-ray scattering amplitude are calculated simultaneously
in the complex energy plane, without the necessity of a
Kramers–Kronig transform. The presence of XAFS gives
rise to significant solid-state contributions in the anomalous
scattering amplitudes, which are ignored in the standard
tables[58]. The approach includes dipole–quadrupole and
quadrupole couplings, and thus, also permits calculations
of X-ray natural circular dichroism (XNCD) and the X-ray
anomalous cross scattering amplitude (XACS), which are
both due to solid state effects. Similarly, calculations of
X-ray magnetic circular dichroism (XMCD) have be car-
ried out [59]. The XMCD for the K-shell emphasize the
importance of spin-orbit relativistic effects in the final state.
RSMS techniques have also been used for photoelectron
diffraction (PD) [60]. Many of these specialized applica-
tions are not yet highly automated. However, the latest
FEFF codes have been modularized to simplify both the
automation and extensions to various spectroscopies and
analysis tools as they are developed.

6. Conclusions

Codes based on RSMS theory now make possible a gen-
eral treatment of XAS, encompassing XANES and EXAFS,
as well as a number of other X-ray spectroscopies. The avail-
ability of a quantitative theory is key to an interpretation of
the spectra in terms of local geometrical structure and elec-
tronic structure. The current state of XAFS is now highly
quantitative and widely used. With reasonable estimates of
the many-body amplitude factor, the error in fine structure
amplitudes is usually less than 10%. With recent develop-
ments in algorithms and calculational speed, quantitative cal-
culations and fits are rapidly becoming possible in XANES
as well, although the agreement is still only semi-quantitative
in many cases. Improved treatments of the self-energy, in-
elastic losses, and core–hole effects are clearly desirable.
Also, efficient approaches for treating many-body correc-
tions such as local field effects and inelastic losses have
been developed, although these are not yet incorporated into
widely available codes. Thus, XANES is beginning to real-
ize its promise as a quantitative tool for elucidating both the
coordination chemistry and electronic structure in materials.
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